Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Ullrika Sahlin. Foto.

Ullrika Sahlin

Universitetslektor

Ullrika Sahlin. Foto.

The tenets of quantile-based inference in Bayesian models

Författare

  • Dmytro Perepolkin
  • Benjamin Goodrich
  • Ullrika Sahlin

Summary, in English

Bayesian inference can be extended to probability distributions defined in terms of their inverse distribution function, i.e. their quantile function. This applies to both prior and likelihood. Quantile-based likelihood is useful in models with sampling distributions which lack an explicit probability density function. Quantile-based prior allows for flexible distributions to express expert knowledge. The principle of quantile-based Bayesian inference is demonstrated in the univariate setting with a Govindarajulu likelihood, as well as in a parametric quantile regression, where the error term is described by a quantile function of a Flattened Skew-Logistic distribution.

Avdelning/ar

  • Centrum för miljö- och klimatvetenskap (CEC)

Publiceringsår

2023

Språk

Engelska

Publikation/Tidskrift/Serie

Computational Statistics and Data Analysis

Volym

187

Dokumenttyp

Artikel i tidskrift

Förlag

Elsevier

Ämne

  • Probability Theory and Statistics

Nyckelord

  • Bayesian analysis
  • Parametric quantile regression
  • Quantile functions
  • Quantile-based inference

Aktiv

Published

ISBN/ISSN/Övrigt

  • ISSN: 0167-9473