Ullrika Sahlin
Universitetslektor
The tenets of quantile-based inference in Bayesian models
Författare
Summary, in English
Bayesian inference can be extended to probability distributions defined in terms of their inverse distribution function, i.e. their quantile function. This applies to both prior and likelihood. Quantile-based likelihood is useful in models with sampling distributions which lack an explicit probability density function. Quantile-based prior allows for flexible distributions to express expert knowledge. The principle of quantile-based Bayesian inference is demonstrated in the univariate setting with a Govindarajulu likelihood, as well as in a parametric quantile regression, where the error term is described by a quantile function of a Flattened Skew-Logistic distribution.
Avdelning/ar
- Centrum för miljö- och klimatvetenskap (CEC)
Publiceringsår
2023
Språk
Engelska
Publikation/Tidskrift/Serie
Computational Statistics and Data Analysis
Volym
187
Dokumenttyp
Artikel i tidskrift
Förlag
Elsevier
Ämne
- Probability Theory and Statistics
Nyckelord
- Bayesian analysis
- Parametric quantile regression
- Quantile functions
- Quantile-based inference
Aktiv
Published
ISBN/ISSN/Övrigt
- ISSN: 0167-9473