Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Ullrika Sahlin. Foto.

Ullrika Sahlin

Universitetslektor

Ullrika Sahlin. Foto.

The potential to use QSAR to populate ecotoxicity characterisation factors for simplified LCIA and chemical prioritisation

Författare

  • Hanna Holmquist
  • Jenny Lexén
  • Magnus Rahmberg
  • Ullrika Sahlin
  • Julia Grönholdt Palm
  • Tomas Rydberg

Summary, in English

Purpose: Today’s chemical society use and emit an enormous number of different, potentially ecotoxic, chemicals to the environment. The vast majority of substances do not have characterisation factors describing their ecotoxicity potential. A first stage, high throughput, screening tool is needed for prioritisation of which substances need further measures. Methods: USEtox characterisation factors were calculated in this work based on data generated by quantitative structure-activity relationship (QSAR) models to expand substance coverage where characterisation factors were missing. Existing QSAR models for physico-chemical data and ecotoxicity were used, and to further fill data gaps, an algae QSAR model was developed. The existing USEtox characterisation factors were used as reference to evaluate the impact from the use of QSARs to generate input data to USEtox, with focus on ecotoxicity data. An inventory of chemicals that make up the Swedish societal stock of plastic additives, and their associated predicted emissions, was used as a case study to rank chemicals according to their ecotoxicity potential. Results and discussion: For the 210 chemicals in the inventory, only 41 had characterisation factors in the USEtox database. With the use of QSAR generated substance data, an additional 89 characterisation factors could be calculated, substantially improving substance coverage in the ranking. The choice of QSAR model was shown to be important for the reliability of the results, but also with the best correlated model results, the discrepancies between characterisation factors based on estimated data and experimental data were very large. Conclusions: The use of QSAR estimated data as basis for calculation of characterisation factors, and the further use of those factors for ranking based on ecotoxicity potential, was assessed as a feasible way to gather substance data for large datasets. However, further research and development of the guidance on how to make use of estimated data is needed to achieve improvement of the accuracy of the results.

Avdelning/ar

  • Centrum för miljö- och klimatvetenskap (CEC)
  • BECC: Biodiversity and Ecosystem services in a Changing Climate

Publiceringsår

2018-11

Språk

Engelska

Sidor

2208-2216

Publikation/Tidskrift/Serie

International Journal of Life Cycle Assessment

Volym

23

Issue

11

Dokumenttyp

Artikel i tidskrift

Förlag

Ecomed Publishers

Ämne

  • Environmental Sciences

Nyckelord

  • Characterisation factors
  • Plastic additives
  • Prioritisation
  • QSAR
  • USEtox

Aktiv

Published

ISBN/ISSN/Övrigt

  • ISSN: 0948-3349