Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Foto på Mattias Ohlsson

Mattias Ohlsson

Professor

Foto på Mattias Ohlsson

Surveillance of Disease Outbreaks Using Unsupervised Uni-Multivariate Anomaly Detection of Time-Series Symptoms

Författare

  • Atiye Sadat Hashemi
  • Mirfarid Musavian Ghazani
  • Mattias Ohlsson
  • Jonas Björk
  • Dominik Dietler

Redaktör

  • John Mantas
  • Arie Hasman
  • George Demiris
  • Kaija Saranto
  • Michael Marschollek
  • Theodoros N. Arvanitis
  • Ivana Ognjanovic
  • Arriel Benis
  • Parisis Gallos
  • Emmanouil Zoulias
  • Elisavet Andrikopoulou

Summary, in English

Effectively identifying deviations in real-world medical time-series data is a critical endeavor, essential for early surveillance of disease outbreaks. This paper demonstrates the integration of time-series anomaly detection techniques to develop surveillance systems for disease outbreaks. Utilizing data from Sweden's telephone counseling service (1177), we first illustrate the trends in physical and mental symptoms recorded as contact reasons, offering valuable insights for outbreak detection. Subsequently, an advanced anomaly detection technique is applied incrementally to these time-series symptoms as univariate and multivariate approaches to assess the effectiveness of a machine learning-based method on early detection of the COVID-19 outbreak.

Avdelning/ar

  • EPI@LUND
  • Centrum för miljö- och klimatvetenskap (CEC)
  • eSSENCE: The e-Science Collaboration
  • LU profilområde: Naturlig och artificiell kognition
  • Avdelningen för arbets- och miljömedicin
  • EpiHealth: Epidemiology for Health

Publiceringsår

2024-08

Språk

Engelska

Sidor

1916-1920

Publikation/Tidskrift/Serie

Studies in Health Technology and Informatics

Volym

316

Dokumenttyp

Konferensbidrag

Förlag

IOS Press

Ämne

  • Computer Science

Nyckelord

  • Anomaly detection
  • Anomaly transformer
  • COVID-19 pandemic
  • Incremental learning
  • Public health surveillance

Conference name

34th Medical Informatics Europe Conference, MIE 2024

Conference date

2024-08-25 - 2024-08-29

Conference place

Athens, Greece

Aktiv

Published

Projekt

  • Improved preparedness for future pandemics and other health crises through large-scale disease surveillance
  • Pandemic preparedness in the era of big data: Disease surveillance tools using individual-level register data and novel mobility data
  • eSSENCE@LU 10:6 - Pandemic preparedness in the era of big data: Disease surveillance tools using individual-level register data and novel mobility data

Forskningsgrupp

  • EPI@LUND

ISBN/ISSN/Övrigt

  • ISSN: 0926-9630
  • ISSN: 1879-8365
  • ISBN: 9781643685335